Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We present the discovery and characterization of TOI-4364b, a young mini-Neptune in the tidal tails of the Hyades cluster, identified through TESS transit observations and ground-based follow-up photometry. The planet orbits a bright M dwarf (K= 9.1 mag) at a distance of 44 pc, with an orbital period of 5.42 days and an equilibrium temperature of K. The host star's well-constrained age of 710 Myr makes TOI-4364b an exceptional target for studying early planetary evolution around low-mass stars. We determined a planetary radius of , indicating that this planet is situated near the upper edge of the radius valley. This suggests that the planet retains a modest H/He envelope. As a result, TOI-4364b provides a unique opportunity to explore the transition between rocky super-Earths and gas-rich mini-Neptunes at the early stages of evolution. Its radius, which may still evolve as a result of ongoing atmospheric cooling, contraction, and photoevaporation, further enhances its significance for understanding planetary development. Furthermore, TOI-4364b’s moderately high transmission spectroscopy metric of 44.2 positions it as a viable candidate for atmospheric characterization with instruments such as JWST. This target has the potential to offer crucial insights into atmospheric retention and loss in young planetary systems.more » « less
-
Abstract The youngest (<50 Myr) planets are vital to understand planet formation and early evolution. The 17 Myr system HIP 67522 is already known to host a giant (≃10R⊕) planet on a tight orbit. In their discovery paper, Rizzuto et al. reported a tentative single-transit detection of an additional planet in the system using TESS. Here, we report the discovery of HIP 67522c, a 7.9R⊕planet that matches with that single-transit event. We confirm the signal with ground-based multiwavelength photometry from Sinistro and MuSCAT4. At a period of 14.33 days, planet c is close to a 2:1 mean-motion resonance with b (6.96 days or 2.06:1). The light curve shows distortions during many of the transits, which are consistent with spot-crossing events and/or flares. Fewer stellar activity events are seen in the transits of planet b, suggesting that planet c is crossing a more active latitude. Such distortions, combined with systematics in the TESS light-curve extraction, likely explain why planet c was previously missed.more » « less
-
Abstract We present the discovery of 11 new transiting brown dwarfs (BDs) and low-mass M dwarfs from NASA’s Transiting Exoplanet Survey Satellite (TESS) mission: TOI-2844, TOI-3122, TOI-3577, TOI-3755, TOI-4462, TOI-4635, TOI-4737, TOI-4759, TOI-5240, TOI-5467, and TOI-5882. They consist of five BD companions and six very-low-mass stellar companions ranging in mass from 25MJto 128MJ. We used a combination of photometric time-series, spectroscopic, and high-resolution imaging follow-up as a part of the TESS Follow-up Observing Program (or TFOP) to characterize each system. With over 50 transiting BDs confirmed, we now have a large enough sample to directly test different formation and evolutionary scenarios. We provide a renewed perspective on the transiting “brown dwarf desert” and its role in differentiating between planetary and stellar formation mechanisms. Our analysis of the eccentricity distribution for the transiting BD sample does not support previous claims of a transition between planetary and stellar formation at ∼42MJ. We also contribute a first look into the metallicity distribution of transiting companions in the range 7–150MJ, showing that this does not support a ∼42MJtransition too. Finally, we also detect a significant lithium absorption feature in one of the BD hosts (TOI-5882). However, we determine that the host star is likely old based on rotation, kinematic, and photometric mdeasurements. We therefore claim that TOI-5882 may be a candidate for planetary engulfment.more » « less
-
Abstract The LHS 1610 system consists of a nearby (d= 9.7 pc) M5 dwarf hosting a candidate brown dwarf companion in a 10.6 days, eccentric (e∼ 0.37) orbit. We confirm this brown dwarf designation and estimate its mass ( MJup) and inclination (114.5° ) by combining discovery radial velocities (RVs) from the Tillinghast Reflector Echelle Spectrograph and new RVs from the Habitable-zone Planet Finder with the available Gaia astrometric two-body solution. We highlight a discrepancy between the measurement of the eccentricity from the Gaia two-body solution (e= 0.52 ± 0.03) and the RV-only solution (e= 0.3702 ± 0.0003). We discuss possible reasons for this discrepancy, which can be further probed when the Gaia astrometric time series become available as part of Gaia Data Release 4. As a nearby mid-M star hosting a massive short-period companion with a well-characterized orbit, LHS 1610 b is a promising target to look for evidence of sub-Alfvénic interactions and/or auroral emission at optical and radio wavelengths. LHS 1610 has a flare rate (0.28 ± 0.07 flares per day) on the higher end for its rotation period (84 ± 8 days), similar to other mid-M dwarf systems such as Proxima Cen and YZ Ceti that have recent radio detections compatible with star–planet interactions. While available Transiting Exoplanet Survey Satellite photometry is insufficient to determine an orbital phase dependence of the flares, our complete orbital characterization of this system makes it attractive to probe star–companion interactions with additional photometric and radio observations.more » « less
-
ABSTRACT Growing numbers of exoplanet detections continue to reveal the diverse nature of planetary systems. Planet formation around late-type M dwarfs is of particular interest. These systems provide practical laboratories to measure exoplanet occurrence rates for M dwarfs, thus testing how the outcomes of planet formation scale with host mass, and how they compare to Sun-like stars. Here, we report the discovery of TOI-6478 b, a cold ($$T_{\text{eq}}=204\,$$ K) Neptune-like planet orbiting an M5 star ($$R_\star =0.234\pm 0.012\, \text{R}_\odot$$, $$M_\star =0.230\pm 0.007\, \text{M}_\odot$$, $$T_{\text{eff}}=3230\pm 75\,$$ K) that is a member of the Milky Way’s thick disc. We measure a planet radius of $$R_b=4.6\pm 0.24\, \text{R}_{\oplus }$$ on a $$P_b=34.005019\pm 0.000025\,$$ d orbit. Using radial velocities, we calculate an upper mass limit of $$M_b\le 9.9\, \text{M}_{\oplus }$$ ($$M_b\le 0.6\, \text{M}_{\text{Nep}})$$, with $$3\, \sigma$$ confidence. TOI-6478 b is a milestone planet in the study of cold Neptune-like worlds. Due to its large atmospheric scale height, it is amenable to atmospheric characterization with facilities such as JWST, and will provide an excellent probe of atmospheric chemistry in this cold regime. It is one of very few transiting exoplanets that orbit beyond their system’s ice-line whose atmospheric chemical composition can be measured. Based on our current understanding of this planet, we estimate TOI-6478 b’s spectroscopic features (in transmission) can be $$\sim 2.5\times$$ as high as the widely studied planet K2-18 b.more » « less
-
Abstract Measuring the obliquities of stars hosting giant planets may shed light on the dynamical history of planetary systems. Significant efforts have been made to measure the obliquities of FGK stars with hot Jupiters, mainly based on observations of the Rossiter–McLaughlin effect. In contrast, M dwarfs with hot Jupiters have hardly been explored because such systems are rare and often not favorable for such precise observations. Here, we report the first detection of the Rossiter–McLaughlin effect for an M dwarf with a hot Jupiter, TOI-4201, using the Gemini-North/MAROON-X spectrograph. We find TOI-4201 to be well aligned with its giant planet, with a sky-projected obliquity of and a true obliquity of with an upper limit of 40◦at a 95% confidence level. The result agrees with dynamically quiet formation or tidal obliquity damping that realigned the system. As the first hot Jupiter around an M dwarf with its obliquity measured, TOI-4201b joins the group of aligned giant planets around cool stars (Teff< 6250 K), as well as the small but growing sample of planets with relatively high planet-to-star mass ratio (Mp/M*≳ 3 × 10−3) that also appear to be mostly aligned.more » « less
-
Astronomers have found more than a dozen planets transiting stars that are 10–40 million years old1, but younger transiting planets have remained elusive. The lack of such discoveries may be because planets have not fully formed at this age or because our view is blocked by the protoplanetary disk. However, we now know that many outer disks are warped or broken2; provided the inner disk is depleted, transiting planets may thus be visible. Here we report observations of the transiting planet IRAS 04125+2902 b orbiting a 3-million-year-old, 0.7-solar-mass, pre-main-sequence star in the Taurus Molecular Cloud. The host star harbours a nearly face-on (30 degrees inclination) transitional disk3 and a wide binary companion. The planet has a period of 8.83 days, a radius of 10.7 Earth radii (0.96 Jupiter radii) and a 95%-confidence upper limit on its mass of 90 Earth masses (0.3 Jupiter masses) from radial-velocity measurements, making it a possible precursor of the super-Earths and sub-Neptunes frequently found around main-sequence stars. The rotational broadening of the star and the orbit of the wide (4 arcseconds, 635 astronomical units) companion are both consistent with edge-on orientations. Thus, all components of the system are consistent with alignment except the outer disk; the origin of this misalignment is unclear.more » « less
-
Abstract We introduce the OATMEAL survey, an effort to measure the obliquities of stars with transiting brown dwarf companions. We observed a transit of the close-in (Porb= 1.74 days) brown dwarf GPX-1 b using the Keck Planet Finder spectrograph to measure the sky-projected angle between its orbital axis and the spin axis of its early F-type host star (λ). We measuredλ= 6.°9 ± 10.°0, suggesting an orbit that is prograde and well aligned with the stellar equator. Hot Jupiters around early F stars are frequently found to have highly misaligned orbits, with polar and retrograde orbits being commonplace. It has been theorized that these misalignments stem from dynamical interactions, such as von Zeipel–Kozai–Lidov cycles, and are retained over long timescales due to weak tidal dissipation in stars with radiative envelopes. By comparing GPX-1 to similar systems under the frameworks of different tidal evolution theories, we argued that the rate of tidal dissipation is too slow to have re-aligned the system. This suggests that GPX-1 may have arrived at its close-in orbit via coplanar high-eccentricity migration or migration through an aligned protoplanetary disk. Our result for GPX-1 is one of few measurements of the obliquity of a star with a transiting brown dwarf. By enlarging the number of such measurements and comparing them with hot-Jupiter systems, we will more clearly discern the differences between the mechanisms that dictate the formation and evolution of both classes of objects.more » « less
-
Abstract We present the discovery of TOI 762 A b and TIC 46432937 b, two giant planets transiting M-dwarf stars. Transits of both systems were first detected from observations by the NASA TESS mission, and the transiting objects are confirmed as planets through high-precision radial velocity observations carried out with Very Large Telescope/ESPRESSO. TOI 762 A b is a warm sub-Saturn with a mass of 0.251 ± 0.042MJ, a radius of 0.744 ± 0.017RJ, and an orbital period of 3.4717 days. It transits a mid-M-dwarf star with a mass of 0.442 ± 0.025M☉and a radius of 0.4250 ± 0.0091R☉. The star TOI 762 A has a resolved binary star companion, TOI 762 B, that is separated from TOI 762 A by 3.″2 (∼319 au) and has an estimated mass of 0.227 ± 0.010M☉. The planet TIC 46432937 b is a warm super-Jupiter with a mass of 3.20 ± 0.11MJand radius of 1.188 ± 0.030RJ. The planet’s orbital period isP= 1.4404 days, and it undergoes grazing transits of its early M-dwarf host star, which has a mass of 0.563 ± 0.029M☉and a radius of 0.5299 ± 0.0091R☉. TIC 46432937 b is one of the highest-mass planets found to date transiting an M-dwarf star. TIC 46432937 b is also a promising target for atmospheric observations, having the highest transmission spectroscopy metric or emission spectroscopy metric value of any known warm super-Jupiter (mass greater than 3.0MJ, equilibrium temperature below 1000 K).more » « less
-
Abstract We report the validation of multiple planets transiting the nearby (d= 12.8 pc) K5V dwarf HD 101581 (GJ 435, TOI–6276, TIC 397362481). This system consists of at least two Earth-size planets whose orbits are near a mutual 4:3 mean-motion resonance, HD 101581 b ( ,P= 4.47 days) and HD 101581c ( ,P= 6.21 days). Both planets were discovered in Sectors 63 and 64 TESS observations and statistically validated with supporting ground-based follow-up. We also identify a signal that probably originates from a third transiting planet, TOI-6276.03 ( ,P= 7.87 days). These planets are remarkably uniform in size and their orbits are evenly spaced, representing a prime example of the “peas-in-a-pod” architecture seen in other compact multiplanet systems. AtV= 7.77, HD 101581 is the brightest star known to host multiple transiting planets smaller than 1.5R⊕. HD 101581 is a promising system for atmospheric characterization and comparative planetology of small planets.more » « less
An official website of the United States government
